Chromatic Scheduling of Dynamic Data-Graph Computations

نویسندگان

  • Tim Kaler
  • Charles E. Leiserson
چکیده

Data-graph computations are a parallel-programming model popularized by programming systems such as Pregel, GraphLab, PowerGraph, and GraphChi. A fundamental issue in parallelizing data-graph computations is the avoidance of races between computation occuring on overlapping regions of the graph. Common solutions such as locking protocols and bulk-synchronous execution often sacrifice performance, update atomicity, or determinism. A known alternative is chromatic scheduling which uses a vertex coloring of the conflict graph to divide data-graph updates into sets which may be parallelized without races. To date, however, only static data-graph computations, which do not schedule updates at runtime, have employed chromatic scheduling. I introduce PRISM, a work-efficient scheduling algorithm for dynamic data-graph computations that uses chromatic scheduling. For a collection of four application benchmarks on a modern multicore machine, chromatic scheduling approximately doubles the performance of the lock-based GraphLab implementation, and triples the performance of GraphChi's update execution phase when enforcing determinism. Chromatic scheduling motivates the development of efficient deterministic parallel coloring algorithms. New analysis of the Jones-Plassmann message-passing algorithm shows that only O(A + In A in V/ In ln V) rounds are needed to color a graph G = (V, E) with max vertex degree A, generalizing previous results for bounded degree graphs. A new log-degree ordering heuristic is described which can reduce the number of colors used in practice, while only increasing the number of rounds by a logrithmic factor. An efficient implementation for the shared-memory setting is described and analyzed using the CRQW contention model, showing that this algorithm performs 6(V + E) work and has expected span O(A In A + 1n 2A In V/In In V). Benchmarks on a set of real world graphs show that, in practice, these parallel algorithms achieve modest speedup over optimized serial code (around 4x on a 12-core machine). Thesis Supervisor: Charles E. Leiserson Title: Professor of Computer Science and Engineering

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Parallel algorithms for scheduling data-graph computations

A data-graph computation — popularized by such programming systems as Pregel, GraphLab, Galois, Ligra, PowerGraph, and GraphChi — is an algorithm that iteratively performs local updates on the vertices of a graph. During each round of a data-graph computation, a user-supplied update function atomically modifies the data associated with a vertex as a function of the vertex’s prior data and that ...

متن کامل

Chromatic polynomials of some nanostars

Let G be a simple graph and (G,) denotes the number of proper vertex colourings of G with at most  colours, which is for a fixed graph G , a polynomial in  , which is called the chromatic polynomial of G . Using the chromatic polynomial of some specific graphs, we obtain the chromatic polynomials of some nanostars.

متن کامل

Just chromatic exellence in fuzzy graphs

A fuzzy graph is a symmetric binary fuzzy relation on a fuzzy subset. The concept of fuzzy sets and fuzzy relations was introduced by L.A.Zadeh in 1965cite{zl} and further studiedcite{ka}. It was Rosenfeldcite{ra} who considered fuzzy relations on fuzzy sets and developed the theory of fuzzy graphs in 1975. The concepts of fuzzy trees, blocks, bridges and cut nodes in fuzzy graph has been studi...

متن کامل

The distinguishing chromatic number of bipartite graphs of girth at least six

The distinguishing number $D(G)$ of a graph $G$ is the least integer $d$ such that $G$ has a vertex labeling   with $d$ labels  that is preserved only by a trivial automorphism. The distinguishing chromatic number $chi_{D}(G)$ of $G$ is defined similarly, where, in addition, $f$ is assumed to be a proper labeling. We prove that if $G$ is a bipartite graph of girth at least six with the maximum ...

متن کامل

Computing Multiplicative Zagreb Indices with Respect to Chromatic and Clique Numbers

The chromatic number of a graph G, denoted by χ(G), is the minimum number of colors such that G can be colored with these colors in such a way that no two adjacent vertices have the same color. A clique in a graph is a set of mutually adjacent vertices. The maximum size of a clique in a graph G is called the clique number of G. The Turán graph Tn(k) is a complete k-partite graph whose partition...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014